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Papers [l and 23 demonstrate the existence and [3] contains a systematic 
examination of self-similar solutions describing the domain of focur:ln& of 
spherical and cylindrical shock waves in a homogeneous gas. 

The class of such solutions can be extended to include the case of+ an 
~~omogeneous cold medium of density pG=ArX (P is the distance to the 
focusing site) and a more general equatlon of state than that of a gas., i.e. 
when the adiabatic index y and corn ression h at the front are not neces- 
sarily bound by Equation h = (y + 1 /(v - 1). This includes the problem B 
about the limiting law of motion of a plane shock wave during emergence onto 
a stellar surface L43. 

We note that an equation of state with h, # (u + l)/(y - 1) (as one inter- 
polated within some range of pressures) can, for example, describe a gas with 
allowance for ionization or liberation of energy at the shock wave front. 

An important prerequisite for the occurrence of focusing with a strony, 
wave for any positive n in an inhomogeneous medium is the assumption of a 
zero initial pressure (pop 0) . As was shown in [5] in connection with the 
problem OS convergence in a gas with pa'# 0 for n > 2(v - 1) (v I: 3, 

resbectively) a convergent wave 
2, 

and 1 for a sphere, cylinder, and plane, 
degenerates into an acoustical one. 

As we know, in solutions of this type the value of the self-similarity 
index k in the expression for the self-similar variable 5 = &T-r is not 
found by analyzing the dimensionality of the problem's parameters, but is 
rather obtained b:' numerJ.c& integration from the condition of Passage of the 
integral curve through a singular point - something which greatly complicates 
the study of a broad class of solutions, e.g. for arbitrary values OS y, h, 
K and v , It is therefore desirable to have on hand simpler, even if 
approximate, results. 

Such an approximate investigaticn can be carried out for the wave inten- 
slty variation law, as well as for the sensitivity of focusing to nonideal 
initial conditions. 

1. DO~IWJ of buildup in the O&IO of ideal ioourlng. Self-similar solu- 
tions describing motions behind the shock wave front contain a characteristic 
which arrives at the center at the same instant as the front and has the 
property of c-line. We shall refer to it as a 5-characteristic. 

Let P be the pressure, u 
of sound in it. 

the velocity of the matter, and c the speed 

Adding to the equation for the characteristic which proceeds toward the 
center (dr/dt = u - c) 
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du 1 dp 
c 7 P 

(v--)u dr -0 -----_______ 
u-c r (1.1) 

the condition of conservation of the T-line of the dimensionless ratios p/o, 
and P/W' we obtain Equation 

dp 1 dpo -- 2P2 -- (v- 1)dr 

P (1 - W’pz) PO (1 - l&4 (1 - Wp2) r 
=O [p=+) (1.2) 

for the <-characteristic. 

The solution of (1.2) for po = A? is 

p = Bra,’ 
x Z(v- i)c12 

a = 1 - 2ppn + (1 - 112) (1 - %-w 
(1.3) 

Because B Is arbitrary, this solution is valid for any line where 
< = const , Including the front. The value of uz Is here taken on the 
c-characteristic. 

Considering c as a function of ~(5) which assumes the value of the 
required Index for u = p2 
1 refers to the front), 

and is easily computed for p = v'l (the subscript 
let us expand It in a series In powers of the dlf- 

ference between the coordinates of the <-characteristic and front (r,-- rl), 

a=a0+(-$),($),($\It(r2-rl):... (1. ‘0 

The difference r2- rl is found from the condition r,/o,= r,/(uz- c), 
(which expresses the simultaneity of the arrival of the wave and character- 
istic at the center) with the use of the expansion of u and c in (fz-7,) 
In the neighborhood of the front. 

Convergence of the series with Judiciously chosen h, y, and posltlve n 
is so rapid that even the zeroth term c of the expansion assures good accu- 
racy. The quantity cc Issues from (1.37 upon r=nIacement of uz by 

J.L1 = - vy (h - i)_’ for the front of the strong shock wave 

x Z(v-1) 

0Lo=1+2/)/r(h)-- 1 $2r-1 1- (h + 1) / I/r -- (h - 1) 
(1.5) 

An estimate of the error associated with approximate Formula (1.5) for c 
In accordance with the second term in (1.4) shows that the error is maximal 
for a plane wave (V = 1) , although even In this case, and even as x _ m , 
the relative error In c 1s not large. 

In the cases of a sphere and a cylinder with not excessively large x 
the linear term in the expansion In (r2- rl) vanishes on the three surfaces 
of the space h, y, u 

z 
--L_ - 

3-h 

h’r+i 1 v----l = F+ l/y-’ (h - 1~1~ 

z 
-=- 

c'72+(2p2_2~_-;o~_(/1~3~2119--')~) _._- 
v-i (l-P)(Y-1 -2p)(ri I'? 

[P=-jj+J] 

Equation y + 1) corresponds to the case where the {-characteristic 
and front coincide D = u - c) ; the rest are the conditions of vanishing 
of the derivatives da/Q), and (Q/d!), . The latter equation Is the result 
of expanding the self-similar quantities in the neighborhood of the front in 

To this end it Is convenient to make use of gas dynamics equa- 
in self-similar variables [6] with an approximate value of the index 7~. 

The quantities c and k are related by the expression k = 1 + *(x -a). 

For a spherical wave In a homogeneous gas with h =(y + l)/(y - I) the 
approxlmate index is equal to the exact one for yeI.54 and ~~2.0. 
The small error associated with the approximate formula in the other cases 
is Illustrated by the following table: 
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Y h 

1.2 il 
1.667 4 

2.0 2.5 z.33 
3.0 2 
1.4 6 
1.667 4 

x Y 

13 
: I3 
0 3 
0 3 
0 3 
0 2 
3.25 1 

(x 

-0.641 
-0.905 
-0.998 
-1.086 
-1.143 
-0.3946 
1.85 

Table 1 
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z-k 

1.3'06 -0.652 1.3262 
1.4527 -0.902 1.4509 
1.4992 1:; -1.000 1.5000 
1.5431 -1.103 1.5516 
1.5713 -1.117 1.5885 
1.1973 ;: ’ I -0.3941 1.1971 
1.70 I”1 1.71 1.77 

Let us take note of some of the properties of convergent waves. From (1.3) 
and (1.5) it follows that the pressure of plane waves In a medium of decreas- 
ing density always diminishes, Increasing In the case of a cylinder andsphere 
only If the density does not diminish too strongly toward the center, 

x<[w--i)(i+ v&))] [i-t-$+ g&-J1 (I.61 

For waves with weak compression at the front (h + l), Inequality (1.6) 
reduces to x < 2(v - 1) , I.e. to the same expression as In [5]. 

The temperature at the front, 
-p,‘hp, - ramx, Increases 

whose magnitude (at constant heat Capacity) 
Is T z-11 the more strongly the larger the n . 
The temperature of the mass !f depends on Its magnitude In accordance with 
the law 

T-M+ X+Y 
(M&r 1 

P=--- 
2(v--1 x 

l+Zr-l+(h+l)/ J+(h--)+1$-'/y/ v/r(A--l) I 

The limit of the exponent 6 as x + = Is finite, and, for example, In 
the case v=3, Y = (h + l)/(h - 1) = "/, is pI 1.5 times as large as 
for a homogeneous medium. The exponent 6 likewise describes the tempera- 
ture distribution In the mass at the Instant of focusing which Is associated 
with the definite value 5 = 0 for all r . 

The asymptotic temperature dlstrlbutlon In the mass near Its center (I.e. 
Its axis or rigid wall) after focusing Is given by 

X-(a/Y) --- 

T-M 
X+Y 

2. 
(1.5) 

Inrtabillty of toourlng. Solution (1.3) with an approximate value of 
c Is actually a solution of the equation for the characteristic In 
which p, u and c are expressed In terms of p and pc from the relations 
on the strong shock wave. A similar equation for p cam also be obtained 
for waves of finite Intensity In a.matter with an arbitrary equation of state, 
as well as for the case where not only pot but also the other parameters of 
the medium (lncludlng those which chWacterlze the equation of state) depend 

r . If now (v - 1)d In r 1s replaced by d In S then In the same 
~~proxlmatlon.~the '-equation describes the behavior of w&es In channels with 
a slowly varying cross section S , after which It can be applied not only 
In the approximate solution of one-dimensional shock waves, but also for the 
descrltlon of the behavior of Individual portions of a front of arbitrary 
shape 'i It Is assumed that In a small neighborhood behind the front the matter 
flows, as it were, along channels whose walls are normal to Its surface). 
The assumption about the spatial coincidence of the front with the character- 
istic Is equivalent to the assumption that the variation of quantities at 
the shock wave occurs only by way of changes In the channel cross section or 
In the state of the matter ahead of the front. 
formula (1.5) Is applicable, for example, 

For this reason approximate 
to the problem of a brief shock 

considered by Zel'dovlch [73, where the pressure drops as a result OC the 
expansion of the material Into space, I.e. where It Is fully determined by 
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the property of the flow behind the front. The equation obtained by assum- 
ing the coincidence of the front and characteristic Is asymptotically accu- 
rate for shcrt waves of small amplitude (sound). 

This method of computing the motion of a shock wave of arbitrary intensity 
and shape has come into wide use In the papers of foreign authors (e.g. see 
survey by Chester [8], which also contains a bibliography). As far as the 
author 1oIows, however, the method has never before been applied to the study 
of shock wave buildup In an inhomogeneous medium. 

In describing the motion of a front of arblrtary shape It 1s convenient 
to use the front velocity D rather than p as the principal variable. 
After P has been replaced by poD2(h - 1)/h and uz by ul, Equation (1.2) 
becomes 

tll) (!iJl, rl'r 
-u 

_’ (1 -~ 
i I,,, ; us (v - 1) -r -0, 

1 
a ~-~~~~ ~~~~ - F - 1 -/- b' I (/L - I) 

:! II ; i 
a8 .- 1 i ~~ ; ; ~2:T-r (2 fl 

7, I/ j (IL - I) 

Its solutions with ('IJ-- ri( Is 

1) _Z Cr 
--,v-I ,rr,-mrp 

(C-- constj (2.2) 

We shall limit ourselves to the consideration of small perturbations, I.e. 
perturbations for which Q , the difference between the true position R of 
the front and Its size r In the absence of perturbations, Is much smaller 
than the characteristic wavelength. In this approximation the derivatives 
along the lines orthogonal to the front (the walls of the elementary chan;lels) 
coincide with the derivatives with respect to R , whereupon Equation (2.1) 
describing a weakly curved front becomes 

IdD, c3lnp,, 8 In J 
J) dR ‘-‘F aI? -I- as i3K -=” 

(2.3) 

Differentiation here is carried out with the other coordinates (e.g. 8 
and cp for a sphere) held constant. The derivative a In S/O Is a sum of 
two quantities: the first of these is (v - 1)R’1 while the second, which is 
due to the perturbation of the front, 
Its derivation) - A*# , where 

turns out to be (we shall not indicate 
A* Is a Laplaclan without the term 

After replacing 
df (r) 

I{ by r I-47, f(fO by f(r) -I-,1,+ 
and isolating the principle part, we obtain the compact form of (2.3), 

(v- 1) a 
+---I-m 

(3.4) 

which remains completely unchanged in the case of waves of finite amplitude 
and an inhomogeneous medium which Is at rest and has an arbitrary equation 
of state. In this case (2 In D/~F Is determined from the solution of the 
corresponding one-dimensional equation of the (2.1) type, while a, is a 
factor appearing in front of the term d In S in such an equation. 

For spherical or merely angular perturbations of cylindrical waves, solu- 
tion (2.4) resolves Into harmonics, and the equation for n , i.e. for the 
radial part of $ , is of the form 

t/27] 
~ - ~ 
rlr" 

d ill d+) = 
dr 

n(ll ;;I)% 71 
(2.5) 

Here n 1s the number of the harmonic. In the cylindrical case n(n+ 1) 
is replaced by n". 

With allowance for (2.1) and (2.2), solution (2.5) for the class'of prob- 
lems under consideration is of the form 
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(2.6) 
The decrease or unbounded Increase of the amplitude/radius ratio Indicates 

stable or unstable focusing, as the case may be. The instability condition 
(a positive value of the real part of at least one of the roots 1 ) coln- 
cldes with the fulfllment of one of the inequalities 

a, (v - I) -I- apx + I> 0, us (v- 1) .i- apx + 1 < - 2 fa,u (n + 1) 

The first Inequality la also the condition of a finite focusing time, as 
Is evident from Formula 

0 

’ dr 
Tf== m-r 

s 

a, (v-l)top”?l ” 

74 
ro 

and therefore includes all casea of any interest, as well as those involving 
an unlimited increase In temperature. 

The degree of Instability Increases with x . As f - 0 the increase 
In perturbation Is determlned by an index associated with a 'plus" In (2.6). 
The largest degree of growth Is associated with harmonics with n - 1 In an 
inhomogeneous medium and n - 2 In a homogeneous medium, where the aolutlon 
of the first harmonic with 1,. 1 corresponds to a simple shift of the shock 
front, which does not prevent the wave from focusing to a point. 

A similar result, I.e. the disruption of the one-dimenelonal progresslon 
of the shock wave with an unlimited Increase In temperature at the front, 
also results for plane waves. 

The conclusion about the Instability of the self-sltnllar focusing of shock 
waves which leads to an unlimited rise In temperature concurs with the hypo- 
thesis of Zababakhln [9], whereby any process Involving the unlimited buildup 
of energy Is not realized In practice due to unsufflclent Initial symmetry. 
fn the case of convergent shock waves, moreover, we see that focusing is 
disrupted alf the more rapidly the higher the degree of temperature increase 
In the wave. Strictly speaking, our results prove the imposslbIllty of the 
unlimited buildup of energy (In a volume or mass of matter) only for the 
homogeneous convergence of shock waves, while the possibility of asymmetrical 
focusing remains open. The stability of convergence was studied approxl- 
mately, b 

T 
a method requiring the appllcablllty of the Initial llchannel" 

equation (2.1) with (V - 1)d In r replaced by d In S ) to segments of the 
perturbed front. The appllcablllty of the equation to the cases of cylinder 
and a sphere has to soms extent been proven. It Is valid In the same degree 
when the cross section of the elementsry channels (or, more properly, the 
addition to the principal part of .S(t) associated with the asymmetry) varies 
relatively little along a length on the order of the domain of lnflilence 
preceding focualng (rp- rl), I.e. (2.4) affords a good description of the 
long-wave perturbations which determine the Instability. 

It Is possible, however, that some of the higher harmonics to which (2.4) 
la not applicable do Indeed increase even more rapidly. But this merely 
reinforces the conclusion drawn concerning Instability. 

The solution of Equation (2.4) for short-wave perturbations lmplles that 
they propagate along the front at the velocity D/m, which does not differ 
reatly from the actual relief rate. 

f, 
We note that in a gas with hfy + l)/ 

(y - 1) the quantity D/m, coincides with the relief rate for the same 
value y - 1.54369... (the root of Equation y'- ye- 2 - 0 ) for which the 
second term of Equation (1.4) vanishes for x-o. Apparently, the appll- 
cablllty of (2.4) 1s somewhat broader than might seem at first Inspection. 

The author is deeply grateful to E.L. Zsbabakbln for his advice and atten- 
tion and to K-A. Semendlaev and K.A. Bagrlnovskil for their comments. 
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