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Papers [1 and 2] demonstrate the existence and [ 3] contains a systematic
examination of self-similar solutions describing the domain of focusnlng of
spherical and cylindrical shock waves ln a homogeneous gas.

The class of such solutions can be extended to include the case of an
inhomogeneous cold medium of density pg == A4r* {(r 1s the distance to the
focusing site) and a more general equation of state than that of a gas, 1.e.
when the adiabatic index y and compression A &at the front are not neces-
sarily bound by Equation h = (y + 1 /(y —~ 1). This includes the problem
about the limiting law of motion of a plane shock wave during emergence onto
a stellar surface [4].

We note that an equation of state with & # (y + 1)}/(y — 1) (as one inter-
polated within some range of pressures) can, for example, describe a gas with
allowance for lonlzation or liberation of energy at the shock wave front.

An important prerequisite for the occurrence of focusing with a strong
wave for any positive x 1n an inhomogeneous medium is the assumption of a
zero initlal pressure (Po= 0) . As was shown in [5] in connection with the
problem of convergence in a gas with po’# 0, for « > 2(v — 1) {v = 3, 2,
and 1 for a sphere, cylinder, and plane, respectlvely) a convergent wave
degenerates into an acoustical one,

As we know, in solutions of this type the value of the self-similarity
index % in the expression for the self-similar variable € = bir'* is not
found by analyzing the dimensionality of the problem's parameters, but is
rather obtained by numerical integration from the condltion of passage of the
integral curve through a singular point - something which greatly complicates
the study of a broad class of solutions, e.g. for arbltrary values of vy, h,
x and v . It is therefore desirable to have on hand simpler, even if
approximate, results.

Such an approximate investigaticn can be carried out for the wave inten-
sity variation law, as well as for the sensitivity of focusing to nonideal
initial conditions.

1. Degree of buildup in the ocase of ideal foousing. Self-similar solu-
tions describing motions behind the shock wave front contain a characteristic
which arrives at the center at the same instant as the front and has the
property of g£~line. We shall refer to it as a g£-characteristlc.

Let p Dbe the pressure, u the velocity of the matter, and ¢ the speed
of sound in it.

Adding to the equation for the characteristic which proceeds toward the
center {(dr/dt = u — c)

917



918 Iu.8. Vakhramsev

du 1 dp (v—1)u dr
T T 7Ty T wse 7 = (1.1)
the condition of conservation of the E-line of the dimensionless ratios p/o,
and p/pu® we obtain Equation
dp 1 dpy 2y (v—1)dr ( ¢\ R
P 0=2rp e U—my(—2rpe) 7 0 B=g) (9

\

for the E-characteristic.
The solution of (1.2) for pe = Ar* 1s
2(v—1)pe
(1 — p2) (1 — 277Mpe)
Because p 1s arbitrary, this solution is valid for any line where

€ = const , including the front. The value of u, is here taken on the
g-characteristic.

%
— a . .
p—Br ,‘ a =1 ZT_IP'Z (1"5)

Considering o as a function of u(g) which assumes the value of the
required index for u = p, and 1is easily computed for u =y, (the subscript
1 refers to the front), let us expand it in a series in powers of the dif-
ference between the coordinates of the eg-characteristic and front (ro—ry),

a=a0+<—z%)l<j—2)l(—g-§>t(r2—rl) e (1.%)

The difference r,— r, is found from the condition r,/D,= r,/(u—c),
(which expresses the simultaneity of the arrival of the wave and character-
istic at the center) with the use of the expansion of u and ¢ in (rz_rl)
in the neighborhood of the front.

Convergence of the series with judiciously chosen h, y, and positive
is so rapid that even the zeroth term q¢ of the expansion assures good accu-
racy. The quantity qo issues from (1.33 upon replacement of u, by

By= — 1f§iﬁf:fjszi for the front of the strong shock wave
® 2(v—1)
Qo (1.5)

Tt/ V=1 1= ()] V(=)

An estimate of the error associated with approximate Formula (1.5) for a
in accordance with the second term in (1.4) shows that the error 1s maximal
for a plane wave (v = 1) , although even in this case, and even as x -~ @ ,
the relative error in o 1s not large.

In the cases of a sphere and a cylinder with not excessively large x
the linear term in the expansion in (r,— r,) vanishes on the three surfaces
of the space h, y, x

h T r 3—h

TrHD v VTR
S L T E U PR S0
v—1T T A== (e L R—1)

Equation h = Y/ y + 1) corresponds to the case where the g~-characteristic
and front coincide (D =y — ¢) ; the rest are the conditions of vanishing
of the derivatives (da/du), and (du/de), . The latter equation is the result
of expanding the self-similar quantities in the neighborhood of the front in
(fF —€,) . To this end it is convenient to make use of gas dynamlcs equa-
tions in self-similar variables [6] with an approximate value of the index k.
The quantities o and # are related by the expression &k =1 + 2(x —a).

For a spherical wave in a homogeneous gas with h =(y + 1)/(y — 1) the
approximate index 1s equal to the exact one for vy = 1.54 and vy ~ 2.0 .
The small error associlated with the approximate formula in the other cases
is illustrated by the following table:
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Table 1

BIBLIO—[ . .

Y h x v a k GRAPHYl =a =K
1.2 11 0 3 —0.641 1.3206 (3} —0.652 1.3262
1.667 4 0 3 —0.905 1.4527 ] —0.902 1.4509
2.0 3 0 3 —0.998 1.4992 I3l —1.000 1.5000
2.5 2.33 | 0 3 —1.086 1.5431 3] —1.103 1.5516
3.0 2 0 3 —1.143 1.5713 [2] i —1.117 1.5885
1.4 6 0 2 —0.3946 1.4973 [} [ —0.3941 1.1971

1.667| 4 3.25 1 1.85 1.70 [4] 1.7 1.77

Let us take note of some of the properties of convergent waves. From (1.3)
and (1.5) it follows that the pressure of plane waves in a medlum of decreas-
ing density always diminishes, increasing in the case of a cylinder and sphere
only if the density does not diminish too strongly toward the center,

2 2 h4+1 -1
w<fromn(rgmimg) e e AL T
" yre—n) | U 7 Yy 46
For waves with weak compression at the front (n - 1), inequality (1.6)

reduces to x < 2(y — 1) , i.e. to the same expression as in [5].

The temperature at the front, whose magnitude (at constant heat capacity)
is T ~ p/hpy ~ r* ™™, 1increases &1l the more strongly the larger the x .
The temperature of the mass ¥ depends on its magnitude in accordance with

the law
TNM—B (MNrK+V)

B_x——a_ 1 2(v—1 . % ]
—”+V”‘“+V[1+2rl+(h+1)/ Via—1) 14/ V(=1

The limit of the exponent B as x - » 1s finite, and, for example, in
the case v=3, y=(h+1)/(h—-1) =%/, 1is ~ 1.5 times as large as
for a homogeneous medium. The exponent B 1likewise describes the tempera-
ture distribution in the mass at the instant of focusing which is assoclated
with the definite value & = O for all r

The asymptotic temperature distribution in the mass near its center (i.e.
its axls or rigid wall) after focusing is given by

_xtam
T ~ M H+v

2. Instability of foousing. Solution (1.3) with an approximate value of
a (1.5) is actually a solution of the equation for the characteristic in
which p, ¥ and ¢ are expressed 1n terms of p and pe from the relations
on the strong shock wave. A similar equation for P can also be obtained
for waves of finite intensity in a.matter with an arbitrary equation of state,
as well as for the case where not only po, but also the other parameters of
the medium (Including those which chdracterize the equation of state) depend
on r ., If now (v—1)d Inr 1s replaced by d ln § , then in the same
approximation:the ‘equation describes the behavior of waves in channels with
a slowly varying cross section S , after which it can be applied not only
in the approximate solution of one-diménslonal shock waves, but also for the
description of the behavlor of individual portions of a front of arbitrary
shape (it 1s assumed that in a small neighborhood behind the front the matter
flows, as 1t were, along channels whose walls are normal to its surface).
The assumption about the spatial coincidence of the front with the charactei-
1stic is equilvalent to the assumption that the variation of quantities at
the shock wave occurs only by way of changes 1n the channel cross sectlon or
in the state of the matter ahead of the front. For this reason approximate
formula (1.5) is applicable, for example, to the problem of a brief shock
considered by Zel'dovich [7], where the pressure drops as a result of the
expansion of the material into space, l.e. where 1t 1s fully determined by
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the property of the flow behind the front. The equatlon obtalned by assum-
ing the coincidence of the front and characteristic is asymptotically accu-
rate for shcrt waves of small amplitude (sound).

This method of computing the motion of a shock wave of arbitrary intensity
and shape has comergqto wide use in the papers of foreign authors (e.g. see
survey by Chester L8], which also contains a bibliography;. As far as the
author knows, however, the method has never before been applied to the study
of shock wave bulldup in an inhomogeneous medium.

In describing the motion of a front of arbirtary shape it is convenilent
to use the front velocity 2 rather than p as the principal variable.
After P has been replaced by poD?(h — 1)/n and u, by u,, Equation (1.2)
becomes
dD g ) . dr ) 1
”1)7— R dr’/ “;(7107 ‘ “s (v— 1) er =:, Qo= T

z nit @21,
vV

ay == 1

Its solutions with po—~ r* 1s
D Cf-\v-l g =Rty (C . COIISt) (2"‘_‘)

We shall 1imlt ourselves to the consideration of small perturbations, i.e.
perturbations for which ¢ , the difference between the true position 7 of
the front and its size r in the absence of perturbations, 1s much smaller
than the characteristic wavelength. In thls approximation the derivatives
along the lines orthogonal to the front (the walls of the elementary chanaels)
coincide with the derivatives with respect to R , whereupon Equation (2.1)
describing a weakly curved front becomes

1 oD d In py dlny

R "% ar % gr (2.3)
Differentiation here 1s carried out with the other coordinates (e.g. &
and @ for a sphere) held constant. The derivative 3 1n 5/dr 1s a sum of
two quantities: the first of these 1s (v — 1)R™! while the second, which 1s
due to the perturbation of the front, turns out to be (we shall not indicate

its derivation) — A*y , where A* 1s a Laplacian without the term

92 (v—1) o
o Y TR aR
After replacilng i (r)
r
R by r--vy, fUy by f(r) =%
and 1solating the principle part, we obtaln the compact form of (2.3),
ap d dln D
ar: — or ( dr
which remains completely unchanged 1n the case of waves of finlite amplitude
and an inhomogeneous medium which is at rest and has an arbitrary equation
of state. In this case d 1ln D/dr 1s determined from the solution of the
corresponding one-dimensional equation of the (2.1) type, while a, 1s a
factor appearing in front of the term 4 1n & 1in such an equation.

) — a A*p =0 (2.4)

For spherical or merely angular perturbations of cylindrical waves, solu-
tion (2.4) resolves into harmonics, and the equation for n , i.e. for the
radial part of ¢ , 1s of the form

n  d { din D\ . n(n--1)a,

e R B T (2.5)
Here n 1is the number of the harmonic. In the cylindrical case n(n+ 1)

is replaced by n»n®.

With allowance for (2.1) and {2.2), solution (2.5) for the class of prob-
lems under consideration 1s of the form
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1 (v—1)a; +ax-+1+4 V[(v—— ya,--ax + 12 —4agn(n - 1)

-1 1-2= 2
(2.6)

The decrease or unbounded increase of the amplitude/radius ratio indicates
stable or unstable focusing, as the case may be. The instabllity condition

(a positive value of the real part of at least one of the roots £ ) coin-
cides with the fulfilment of one of the inequalities

g (v—1)tax+1>0,  a(v—1)tax1<—2 Vagn (et 1)

The first inequality 1s also the condition of a finite focusing time, as
is evident from Pormula

*dr ag (V1) +apR+1 0
T!:SD(")er Ts
To
and therefore includes all cases of any interest, as well as those involving
an unlimited increase in temperature.

The degree of instability lincreases with x . As 7 - 0 i the increase
in perturbation is determined by an index associated with a "plus” in (2.6).

The largest degree of growth is associated with harmonics with n = 1 in an

inhomogeneous medium and »n = 2 in a homogeneous medium, where the solution

of the first harmonic with £,= 1 corresponds to a simple shift of the shock
front, which does not prevent the wave from focusing to a point.

A similar result, i.e. the disruption of the one-dimensional progression
of the shock wave with an unlimited increase in temperature at the front,
also results for plane waves.

The conclusion about the instability of the self-similar focusing of shock
waves which leads to an unlimited rise in temperature concurs with the hypo-
thesis of Zababakhin [9], whereby any process involving the unlimited buildup
of energy is not realized in practice due to unsufficient initial gsymmetry.
In the case of convergent shock waves, moreover, we see that focusing is
disrupted all the more rapidly the higher the degree of temperature increase
1n the wave, Strictly speaking, our results prove the impossibility of the
unlimited bulldup of energy (in a volume or mass of matter) only for the
homogeneous convergence of shock waves, while the possibility of asymmetrical
focusing remains open. The stability of convergence was studled approxi-
mately, by a method requiring the applicability of the initial "channel"
equation ¥(2.1) with (v — 1)d In 7 replaced by d 1n S )} to segments of the
perturbed front. The applicability of the egquation to the cases of cylinder
and a sphere has to some extent been proven. It 18 valld in the same degree
when the cross section of the elementary channels (or, more properly, the
addition to the principal part of S(r) associated with the asymmetry) variles
relatively little along & length on the order of the domain of influence
preceding focusing (r,— r,), i.e. (2.4) affords a good description of the
long-wave perturbations which determine the instability.

It 1s possible, however, that some of the higher harmonics to which (2.%)
1s not applicable do lndeed increase even more rapidly. But this merely
reinforces the conclusion drawn concerning instability.

The solution of Equation (2.%) for short-wave perturbations implies that
they propagate along the front at the velocity 2//a,, which does not differ
reatly from the actual rellef rate. We note that in a gas with h{y + 1)/

5(y — 1) the quantity D/ﬁi coincides with the relief rate for the same
value y = 1,54369... (the root of Equation y*— y®—~ 2 = 0 ) for which the
second term of Equation (1.4) vanishes for » = O . Apparently, the appli-
cability of (2.4) is somewhat broader than might seem at first inspection.

The author is deeply grateful to E.I. Zababakhin for his advice and atten-
tion and to K.A. Semendlaev and K.A. Bagrinovskii for their comments.
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